 JUNIOR MATHS

# Recordings & Questions

## Practice Questions

True or false:

(b) All rectangles are parallelograms.

(c) All squares are parallelograms.

(e) Find the angle $$A$$ in the following quadrilateral:

(f) Find the angles $$A$$, $$B$$ and $$C$$ in the following parallelogram:

(g) Find the value of $$x$$ in the following quadrilateral:

(a) False

(b) True

(c) True

(d) True

(e) $$146^{\circ}$$

(f) $$A=53^{\circ}$$, $$B=127^{\circ}$$ and $$C=127^{\circ}$$

(g) $$37.5^{\circ}$$

Grind #2 - Other Shapes

## Practice Questions

The length of a square’s side is $$x-2\mbox{ cm}$$.

(a) Write down an expression for the area of the square.

(b) Write down an expression for the perimeter of the square.

(c) The perimeter of the square is equal to $$20\mbox{ cm}$$. What is the value of $$x$$?

(d) Calculate the area of the shape below.

A circle has a diameter of $$10\mbox{ cm}$$.

Calculate the circle’s:

(f) circumference

(g) area

by using $$3.14$$ as an approximation for $$\pi$$ where necessary.

The circumference of a particular circle is $$x\mbox{ cm}$$ and the area of that same circle is $$x\mbox{ cm}^2$$.

(h) What is the radius of the circle?

(i) What is the value of $$x$$?

(a) $$(x-2)^2\mbox{ cm}^2$$

(b) $$4x-8\mbox{ cm}$$

(c) $$7\mbox{ cm}$$

(d) $$400\mbox{ cm}^2$$

(e) $$5\mbox{ cm}$$

(f) $$31.4\mbox{ cm}$$

(g) $$78.5\mbox{ cm}^2$$

(h) $$2\mbox{ cm}$$

(i) $$4\pi$$

## Practice Questions

Solve the following equations:

(a) $$x^2+7x+10=0$$

(b) $$3x^2-7x+2=0$$

Solve the following equations and write you answers in surd form:

(c) $$3x^2+8x+2=0$$

(d) $$6x^2-9x-4=0$$

Two numbers have a sum of $$13$$.

(e) If one of the numbers is $$x$$, what is the other number in terms of $$x$$?

(f) If the sum of their squares is $$89$$, find the numbers.

The length of a rectangle is $$4\mbox{ cm}$$ more than its width. The area of that rectangle is $$77\mbox{ cm}^2$$.

(g) What is the length and the width of the rectangle?

(a) $$x=-2$$ and $$x=-5$$

(b) $$x=\dfrac{1}{3}$$ and $$x=2$$

(c) $$x=\dfrac{-4+\sqrt{10}}{3}$$ and $$x=\dfrac{-4-\sqrt{10}}{3}$$

(d) $$x=\dfrac{9+\sqrt{177}}{12}$$ and $$x=\dfrac{9-\sqrt{177}}{12}$$

(e) $$13-x$$

(f) $$5$$ and $$8$$

(g) Length is $$11\mbox{ cm}$$ and width is $$7\mbox{ cm}$$.